загрузка...

Квантовая гравитация

  • 15.06.2010 / Просмотров: 15996
    //Тэги: Гордон   гравитация   квантовая механика  

    Гравитационное взаимодействие занимает особое место в физике. Оно одинаково в любой среде, несводимо к другим видам взаимодействий. Мощность его столь мала, что оно сложно поддается измерению земными приборами. Тем не менее именно оно определяет движение космических тел. Какова природа гравитации? Законченной теории гравитации на данный момент нет, но попытки создать её активно ведутся многими учеными. О квантовой теории гравитации, альтернативных поисках и теории тяготения Ньютона, которая, как ни странно, вполне удовлетворяет геофизиков в их расчетах, - в цикле программ «Гравитация»







загрузка...

Для хранения и проигрывания видео используется сторонний видеохостинг, в основном rutube.ru. Поэтому администрация сайта не может контролировать скорость его работы и рекламу в видео. Если у вас тормозит онлайн-видео, нажмите паузу, дождитесь, пока серая полоска загрузки содержимого уедет на некоторое расстояние вправо, после чего нажмите "старт". У вас начнётся проигрывание уже скачанного куска видео. Подробнее

Если вам пишется, что видео заблокировано, кликните по ролику - вы попадёте на сайт видеохостинга, где сможете посмотреть этот же ролик. Если вам пишется что ролик удалён, напишите нам в комментариях об этом.


Расшифровка передачи


Александр Гордон. Сегодня мы обсуждаем самое капризное из всех видов взаимодействия, если можно так сказать, наислабейшее взаимодействие, которое встречается в природе — гравитацию, или, как шутят физики, ее попытку, вернее, сопротивление создать единую теорию поля. Сегодня — о теории квантовой гравитации. Какова ее природа? Что это такое? Кто начнет?
Дмитрий Гальцов. Ну, давайте я. Дело в том, что классическая теория гравитации, как мы сейчас полагаем, существует, и в принципе, хотя и возникают отдельные проблемы, включая проблемы согласования с экспериментом, с астрофизическими данными, они до сих пор благополучно разрешались в рамках общей теории относительности. И мы считаем, что классическая теория гравитации у нас есть. Эта теория была создана Эйнштейном, и создана довольно удивительным образом.
Вообще, можно сказать, что физические теории создаются исходя из двух предпосылок: либо есть какие-то экспериментальные данные, которые нужно объяснить, либо уже существуют хорошо проверенные теории, между которыми возникают теоретические противоречия, конфликт. Эйнштейн как раз столкнулся с таким противоречием между ньютоновской теорией гравитации, которая строится как нерелятивистская теория, и специальной теорией относительности, которую он в значительной степени сам и создал. Решение было найдено нетривиальное и неочевидное, но очень простое и красивое. Именно, было предложено считать, что пространство-время — это и есть гравитационное поле, и что истинная теория гравитации — это теория пространства-времени.
После того как уже в XX веке были открыты и другие виды взаимодействия, такие как слабые и сильные и, помимо электромагнитного поля {из теории которого возникла специальная теория относительности), стали известны другие физические поля, то вскоре была сформулирована и общая схема построения полевых теорий взаимодействия. Эта схема отличается от того, что было предложено Эйнштейном для гравитационного поля, поэтому стали задумываться о том, а была ли эта теория гравитации действительно построена правильно.
Такие попытки пересмотра теории гравитации с позиций общих принципов релятивистской теории поля предпринимались уже в 30-е годы и неоднократно повторялись позже. Согласно существующим представлениям, поля классифицируются по массе и спину (который представляет собой как бы внутренний вращательный момент частицы).
Оказалось, что если выбрать в качестве переносчика гравитационного взаимодействия безмассовую частицу со спином 2, для чего существуют веские экспериментальные основания, и попытаться построить теорию по образцу теорий других взаимодействий, то на самом деле мы возвращаемся к эйнштейновской теории. Так что каких-либо оснований сомневаться в ней, как в классической теории, у нас нет.
Но в отличие от других теорий, прежде всего электродинамики, оказалось, что ее нельзя прямо трансформировать в квантовую теорию, распространяя на нее принципы квантовой механики. Так, как это удалось с теорией Максвелла, и так, как, в конечном счете, удалось построить, правда, не сразу, теорию сильных взаимодействий. Для этого есть несколько причин. Хотя эйнштейновская теория и похожа на другие, но вместе с тем у нее есть свои отличия, прежде всего, необходимость привлечения понятия искривленного пространства-времени.
И вот сейчас ситуация такова, что под термином квантовая гравитация зачастую понимают различные попытки сформулировать эту теорию. Тот факт, что сейчас есть различные модели квантовой гравитации, конечно, просто означает, что они еще не окончательны и не всеобъемлющи. Например, есть модель, которая позволяет рассчитывать возникновение Вселенной в целом как квантовый процесс рождения, подобный рождению частиц. Это не есть полная теория, но все же можно надеяться, что этот процесс в какой-то степени описывается адекватно, правильно в такой модели. Почему? Потому что она основана на общих принципах квантовой механики и принципах общей теории относительности. И ограничение, или приближение, которое приходится сделать, это ограничиться узким классом допустимых полей, которые возникают из решения классических уравнений теории Эйнштейна для мира в целом. Но это один из допустимых в физике приближенных методов.
Квантовая механика общей теории относительности — это тоже квантовая гравитация. Тогда в качестве кванта гравитационного поля выступает безмассовая частица спина два — гравитон. В рамках теории возмущений, справедливой, если гравитационное взаимодействие слабо, можно рисовать диаграммы Фейнмана и пытаться развивать теорию по образцу электродинамики. В таком подходе возникают трудности, связанные с бесконечностями (расходящимися интегралами), причем, в отличие от электродинамики, имеется бесконечное число таких бесконечностей. Как бороться с этим? Были разные предложения, например можно попытаться изменить классическую теорию, вместо эйнштейновской взять другую классическую теорию, которую можно было бы проквантовать. Оказывается, что на этом пути возникают свои проблемы, и до сих пор эта программа не была реализована.
Ну, и наконец, существует подход, который пока не сталкивался с какими-либо принципиальными трудностями, хотя общая картина до конца еще не прояснена. Это способ, который предлагает теория струн.
Логика здесь такова, что вообще хотелось бы не просто построить некоторую квантовую теорию гравитации, но и объяснить само явление гравитационного взаимодействия с других позиций. Подобные объяснения, собственно, и возникали всегда при создании новых теорий, в значительной степени именно это убеждало ученых, что новая теория интересна и жизнеспособна.
Так вот, сейчас такая возможность объяснения гравитации с новых позиций действительно существует. И она вначале кажется весьма далекой от собственно гравитации. Просто рассматриваются модели (негравитационных) взаимодействий элементарных частиц, специальным образом симметризованные относительно бозонов и фермионов (частиц с целым и полуцелым спином), то, что называется суперсимметричными теориями.
Сейчас пока неясно, реализуется ли суперсимметрия на уровне элементарных частиц при энергиях, достижимых на ускорителях, но программа поиска суперсимметрии активно развивается.
Так вот, если принять, что суперсимметрия — это реальная физическая симметрия, то дальше вступает в игру чисто теоретический принцип, требующий, чтобы преобразования симметрии могли осуществляться независимо в каждой точке пространства-времени. Это называется принципом локальной симметрии, или калибровочным принципом.
И вот оказывается, что если взять суперсимметричную теорию негравитационного взаимодействия элементарных частиц и сделать эту симметрию локальной, то автоматически в такой теории появляется гравитационное поле. Гравитация возникает как следствие локальности суперсимметрии между бозонами и фермионами. Это совершенно независимое от какого-либо другого подхода объяснение гравитационного притяжения. В конечном счете, получается не совсем эйнштейновская гравитация, а то, что называется супергравитацией. В ней присутствуют дополнительные фермионные поля (возможно одно, либо несколько), называемые гравитино. Но в классическом пределе она переходит в эйнштейновскую теорию. Дальше эта история довольно длинная, и она приводит к теории суперструн.
Наверное, сейчас стоит остановиться и поговорить о феноменологических причинах, побуждающих нас строить квантовую гравитацию, а затем уже вернуться к теории суперструн.
Алексей Старобинский. Я, пожалуй, хотел немного добавить с другой стороны. Дима нам рассказывал о том, как вообще можно к квантовой гравитации идти. Это мечта всех физиков. Это была мечта Эйнштейна его последних 20, если не больше, лет жизни — создать единую теорию у всех полей. Но поскольку про остальные поля материи мы знаем четко, что они квантовые, слава Богу, квантовой механики вокруг нас полным-полно. И сколько угодно реальных приборов, работающих на квантовой механике.
Ну, скажем, лазер. Если исходить из идеи, что должна быть единая теория, описывающая сразу все поля, то, естественно, квантовая гравитация должна быть квантовой тоже.
Но можно прийти к более, я бы сказал, простому пути, относясь к теории Эйнштейна как классической, но не абсолютизируя ее, а относясь к ней как к очень точной теории, однако имеющей естественные границы.
Кстати, я еще раз напомню, хочу, чтобы вы четко знали: на опыте никаких пока что отклонений от теории гравитации Эйнштейна не обнаружено. Другое дело, что, конечно, все опыты имеют ограниченную область.
Эта теория Эйнштейна верна в колоссальной области — от масштабов порядка явно больших, чем микроны, до масштабов порядка современной видимой части Вселенной. Это порядка 10 тысяч мегапарсек. Ну, а в сантиметрах — это 1028 сантиметров.
Однако из имеющихся у нас фундаментальных констант, той размерной константой, которая в теорию Эйнштейна входит, это гравитационная постоянная, это фактически ньютоновская гравитационная постоянная. Естественно, Ньютон не знал, что есть постоянная Планка, есть скорость света.
Из них можно составить их размерности: так называемая планковская длина, планковское время и планковская масса. Это сделать очень легко, поскольку это можно сделать единым способом. И Макс Планк сделал это еще в начале нашего века.
Планковская длина — это страшно мало, это 10-33 сантиметров.
Но, действительно, даже просто на основе такого размерного анализа, чисто качественно, без тех конкретных количественных моделей, о которых рассказывал Дима, уже видно, что можно ожидать, что есть естественная граница применимости теории Эйнштейна.
Итак, теория Эйнштейна и обычная квантовая теория поля, которая опирается на представления о классическом пространстве и времени, абсолютно верна до сколь угодно малых масштабов.
А если относиться к ним как все-таки не абсолютным теориям, а к приближенным, работающим на масштабах больше планковских, то можно оценить, и довольно разумно, не противоречиво, какие же будут квантовые поправки к теории Эйнштейна.
Оказывается, что они становятся существенными именно на этих масштабах. Как минимум. Другое дело, что может оказаться, что отклонения от теории Эйнштейна начнутся раньше. И это интересная возможность.
Во всяком случае, исходя из сугубо житейской точки зрения, давайте относиться к теории Эйнштейна как очень точной, но все-таки не абсолютно точной теории, и просто оценивать, каковы могли бы быть границы ее применимости. Сейчас мы действительно приходим к тому, что есть такие границы, естественно, есть. Они лежат на очень малых масштабах, но они есть.
Эти поправки к квантовой теории Эйнтшейна возникают в равной степени как из-за чистой гравитации, так и из-за того, что она взаимодействует со всеми остальными видами материи.
То есть самая простая житейская логика нас ведет именно к тому, что нужно искать некую единую квантовую теорию. Это должна быть теория всех видов материи. Это первое обстоятельство.
Второе обстоятельство, которое приводит к очень спорному выводу. Этот вывод состоит в том, что эффекты квантовой гравитации важны не только для понимания фундамента, они могут быть существенны даже и сейчас.
То есть у эффектов квантовой гравитации сверхмалых масштабов могут быть микроскопические следствия, которые видны и сейчас — это вообще вещь очевидная.
Когда говорят, что видят элементарные частицы, конечно, видят не сами элементарные частицы. Что мы реально видим — это те процессы, которые они вызывают во всяких детекторах, фотоумножителях, где процессы эти усилены.
То есть важна сама по себе идея, что мы можем видеть макроскопическое следствие, индуцированное какой-то микроскопической квантовой причиной. Это вполне очевидно.
Александр Гордон. Но такого рода следствия могут быть здесь, если мы говорим о квантовой теории гравитации.
Алексей Старобинский. Конечно, да. Так вот, причина, по которой в действительности можно ожидать, что эффекты квантовой гравитации мало того что макроскопические, они вокруг нас, состоит в следующем.
Мы из теории Эйнштейна знаем, что в прошлом была космологическая сингулярность, или состояние сверхплотного вещества. И там были заданы квантовые эффекты гравитации. Они должны были быть важными. И тогда возникли начальные условия для нашей Вселенной, которые могли формироваться только на квантовом языке. Отсюда видно, что Вселенная вокруг нас и сейчас является квантовой. Просто потому, что в прошлом она была квантовой.
Дмитрий Гальцов. Действительно, наблюдение реликтового излучения позволяет нам косвенно заглянуть в очень далекие участки расширяющейся Вселенной, которые соответствуют самому началу космологического расширения. Чтобы понять, как сформировался спектр реликтового излучения, необходимо сделать предположение о квантовом характере состояния ранней Вселенной. Таким образом, одна из возможностей убедиться в необходимости квантовой теории для объяснения истории Вселенной — это наблюдение реликтового излучения и косвенные выводы относительно того, как оно возникло именно в таком состоянии. Для этого необходимо сделать определенные предположения о ранней стадии, в том числе и квантовые.
А вот другая, в некотором смысле более прямая возможность, которую, насколько я знаю, предложил ленинградский физик Варшалович. Есть очень далекие квазары, от которых принимаются сейчас сигналы в виде спектральных линий — их можно анализировать. И эти измерения позволяют непосредственно изучать, какими были физические законы 8 миллиардов лет назад. К сожалению, в нашей стране нет телескопов, которые позволили бы сделать подобные измерения с достаточной точностью и получить достоверную информацию в пределах ошибки измерений. Все измерения, которые делала группа Варшаловича, действительно указывают на то, что, возможно, новый эффект есть, но ошибка измерений оказывается порядка величины самого эффекта.
А вот другая группа в Австралии, располагающая необходимыми инструментами, последние три года упорно совершенствует свои измерения. И недавно опубликованы новые данные, справедливые с ошибкой, составляющей всего одну шестую от результата. Они говорят о том, что одна из фундаментальных квантовых постоянных, постоянная тонкой структуры, которая определяет атомные спектры, была тогда немножко меньше, совсем немного — меньше чем на сотую долю процента. Но все же, если это действительно так, это важный результат. Пока он не подтвержден никакими другими группами, потому что это достаточно уникальный телескоп и достаточно уникальная методика измерений. Но, конечно, теоретики уже начеку, и предлагаются всевозможные модели.
Вопрос — имеет ли это отношение к квантовой гравитации? В каком-то смысле да, потому что мы склонны думать, что если и будет какая-то альтернативная классическая теория гравитации, то она в известной степени должна быть привязана к квантовой. Потому что именно в этом состоит основная теоретическая проблема.
Так вот, построить некоторую модель для объяснения непостоянства «постоянной» тонкой структуры можно, только модифицируя эйнштейновскую теорию на классическом уровне: для этого достаточно ввести дополнительные скалярные поля. Но это все же не может считаться теорией фундаментального уровня.
Модель со скалярными полями будет иметь те же проблемы, что и эйнштейновская теория, если ее прокванто-вать. Поэтому другая, более сложная задача — это понять, какая за этим стоит фундаментальная теория.
Я опять возвращаюсь к супергравитации и теории струн. Там такая возможность существует. Более того, в супергравитации и теории струн с необходимостью присутствуют скалярные поля, от них очень трудно отделаться. При этом гравитационная постоянная на самом деле умножается на некоторую функцию скалярного поля и может в результате стать переменной величиной. А отсюда будет возникать зависимость от времени и других физических констант, которые пока считаются фундаментальными постоянными.
Как себя ведет скалярное поле в ходе космологической эволюции — это отдельная и сложная задача. Во всяком случае, принципиально такая возможность объяснения непостоянства некоторых физических констант существует, и поэтому, если упомянутые выше данные подтвердятся, их тоже можно будет считать указанием на то, что правильная основа для понимания квантовой гравитации содержится в теории струн.
Александр Гордон. К слову об указаниях. Общая теория относительности, называя гравитацию все-таки следствием искривления пространства-времени, одним из возможных последствий называет существование черных дыр, с которыми до сих пор отношения, как я понимаю, не выяснены. Есть они или нет. Если они есть, как они себя ведут, что они из себя представляют?
А что говорит квантовая гравитация о возможности существования черной дыры и как описывает ее, если ее существование возможно?
Алексей Старобинский. Во-первых, здесь вы не совсем точны — черные дыры в действительности есть. И я хочу подчеркнуть, что черные дыры, несомненно, существуют как некоторые астрофизические объекты. Не нужно путать некоторые теоретические конструкции. В частности, среди теоретиков есть, скажем, дискуссия о том, что происходит под горизонтом событий в черной дыре. И здесь, в принципе, дискуссия возможна. Но есть четкие предсказания, практически не зависящие от теории и даже остающиеся вообще вне теории Эйнштейна.
Как выглядит внешняя область черной дыры? Это объект, у которого нет никакой четкой поверхности, какая есть у нейтронной звезды. Мы видим такие объекты, мы видим их в парах двойных звезд. Мы видим от них жесткое рентгеновское излучение. В этом излучении мы видим другие объекты, в которых, мы уверены, есть черные дыры...
У объектов другого класса никакого принципиально четкого периода нет. Этот четко определенный класс объектов есть, и мы их просто видим. И самое лучшее для них объяснение — это черные дыры...
Александр Гордон. И наверное, про массу тоже надо сказать.
Алексей Старобинский. Да, и еще... Абсолютно правильно Дима сказал. Есть еще некоторые особенности в их спектре излучения. Кроме того, поскольку они находятся в двойных звездах, то по обычной ньютоновской динамике можно определить их массу.
Оказывается, что масса всех нейтронных звезд, в которых мы видим период, меньше Солнца. Масса же всех этих объектов — больше полутора массы Солнца.
Это согласуется с нашими теоретическими картинами о том, что не может быть нейтронных звезд с массой больше, чем примерно полторы массы Солнца.
Кроме того, есть четкий подкласс объектов, довольно большой — черные дыры с массой от двух до ста масс Солнца. Это черные дыры в составе двойных.
Есть совсем другой класс. Это сверхмассивные черные дыры в центрах галактик. По движению звезд вокруг них мы видим громадную массу от 106 до 109 степени от массы Солнца. В очень малом объеме. И опять никакого разумного объяснения, кроме черной дыры, в действительности нет.
И сейчас просматриваются даже промежуточные массы — 104 от массы Солнца. Я хочу сказать, что безотносительно к теоретическим проблемам, которые можно обсуждать, есть абсолютно четко определенный класс объектов. И для них, я подчеркиваю, никакого объяснения, кроме того, которое нам предлагает теория Эйнштейна, никто пока найти не смог.
Причем, со временем появляются все более тонкие детали. Уже сейчас идет обсуждение именно таких деталей.
Что по этому поводу говорит квантовая теория? Насчет таких больших черных дыр квантовая теория говорит, что там квантовые эффекты ничтожны. То есть я бы сказал, что по отношению к наблюдаемым черным дырам квантовая теория не добавляет практически ничего.
Квантовая теория становится существенной при описании очень маленьких черных дыр, с массой, скажем, астероида какого-нибудь или еще меньше.
Но таких черных дыр мы не видим. И более того, есть причины, что их вообще быть не должно. Поэтому обсуждение квантовых черных дыр, опять-таки, для теории-то важно, но в смысле практических приложений оно, как говорится, не слишком важно.
Дмитрий Гальцов. Я бы добавил, что хотя действительно микроскопические черные дыры, возможно, и не образуются в ходе реальной космологической эволюции, они теоретически мыслимы. То есть они могли бы существовать. Возможно, они не образуются в ходе реального космологического расширения, потому что не было достаточных флуктуации плотности. А все же стоит, наверное, поговорить об этом побольше.
Картина черной дыры с классической точки зрения — это объект, который абсолютно все поглощает, там имеется поверхность горизонта событий. Горизонт событий напоминает горизонт наблюдений на поверхности Земли. Это линия, за которой мы ничего не видим, корабли скрываются за горизонтом и как бы исчезают из нашего мира. Однако ситуация изменяется, если нам придет в голову двинуться в сторону горизонта.
Возьмем глобус и разрежем его по экватору. Мы получим два полушария. Можно нарисовать карту Земли, изобразив на плоскости северное и южное полушария. Предположим, Магеллан двинулся вдоль меридиана, имея с собой карту северного полушария, но ничего не подозревая о существовании южного. Он, наверное, ожидал бы натолкнуться на какую-то стенку или увидеть край Земли. Однако, приближаясь к экватору, он заметил, что линия горизонта отдаляется от него все дальше и дальше, и никакого препятствия движению нет.
В случае черной дыры горизонт событий — это поверхность в кривом пространстве-времени, образованная световыми лучами, поэтому с точки зрения покоящегося внешнего наблюдателя добраться до нее, двигаясь со скоростью меньшей скорости света, вообще невозможно за конечное время. Однако если начать двигаться к горизонту, то ситуация меняется. Согласно теории относительности, время для движущегося наблюдателя течет иначе, причем при приближении к горизонту конечный промежуток времени для наблюдателя, сидящего в ракете, будет соответствовать бесконечному промежутку времени по часам удаленного наблюдателя. Здесь аккумулируются два явления: зависимость хода часов от движения и изменение течения времени в гравитационном поле.
В результате, наблюдатель, падающий в черную дыру, пересечет горизонт событий через конечное собственное время, и он задумается о том, куда попал, только осознав, что уже никогда не сможет выбраться обратно — для этого пришлось бы двигаться быстрее света. И через несколько мгновений он упадет на сингулярность — центральную точку черной дыры.
По аналогичным причинам фотон, падающий в черную дыру, изменяет свою частоту в сторону уменьшения, «краснеет». Поверхность горизонта событий — это поверхность бесконечного красного смещения и бесконечного замедления времени. Однако внутренняя область черной дыры реально существует — она просто не видна для внешнего наблюдателя.
Астрофизические наблюдения черных дыр всегда связаны с наблюдением вещества во внешней области, близкой к горизонту.
Такова классическая картина черной дыры, которая существовала до 1974 года. И было довольно неожиданным, когда Хокинг, исходя из принципов квантовой теории, предложил совершенно другую картину черной дыры, испускающей излучение как нагретое тело и характеризующейся определенной температурой. Для наблюдающихся сейчас черных дыр звездной массы, и тем более сверхмассивных черных дыр в центрах галактик, эта температура ничтожно мала, и излучение Хокинга не приводит к реальным эффектам. Но черная дыра с массой среднего астероида должна была бы проявить себя квантовым образом — в виде мощной вспышки излучения. Позже механизм, почему это происходит, получил различные истолкования.
Первоначальная модель Хокинга апеллировала к эффекту квантового рождения частиц сильным гравитационным полем. Так же, как в поле ядер спонтанным образом рождаются электрон-позитронные пары, если это поле слишком сильно, существует критическая напряженность поля, когда начинается спонтанное рождение пар. Это можно себе представить как разрыв сильным полем связанных элект-рон-позитронных пар, которые всегда присутствуют в пустоте, как говорят, «виртуально», т.е. представляют собой квантовые флуктуации. Разрыв происходит потому, что частицы-пары движутся в электрическом поле в разные стороны, в результате происходит «материализация» частиц виртуальной пары.
В черных дырах этот механизм работает несколько иначе, поскольку гравитация — это всегда притяжение. Поскольку и электрон, и позитрон имеют положительную массу, они движутся в одном направлении. Но под горизонтом существуют состояния с отрицательной (с точки зрения внешнего наблюдателя) энергией, поэтому во внешней области будут рождаться и электроны, и позитроны (наряду с другими частицами, причем основную роль играют безмассовые частицы), а соответствующие частицы отрицательной энергии возникают под горизонтом событий. Но самое удивительное, что спектр рождающихся частиц — тепловой, как будто это звезда с определенной температурой.
Как выяснилось, это имеет чисто геометрическую причину и заключено в самом характере метрик, описывающих пространства с горизонтом событий. В квантовой теории поля оказывается полезным вводить понятие мнимого времени, таким путем можно описать квантовые флуктуации как движение под потенциальным барьером (когда кинетическая энергия становится мнимой) — квантовое туннелирова-ние. Оказывается, что метрика Шварцшильда, описывающая простейшую черную дыру в классической эйнштейновской теории, должна быть периодична по мнимому времени с определенным периодом (иначе в решении будет сингулярность), а это эквивалентно рассмотрению системы в термостате с температурой, обратно пропорциональной периоду. Вычисляя период, получаем температуру, совпадающую с найденной Хокингом из теории рождения частиц гравитационным полем.
Все эти красивые результаты наводят на поэтические размышления о «силе жизни». Остывшая звезда «умирает», кол-лапсируя в черную дыру, которая вновь возрождается к жизни, излучая частицы как нагретое тело.
Александр Гордон. То есть черная дыра излучает все-таки?
Дмитрий Гальцов. Черная дыра излучает. Она рождает все виды частиц. В основном, это безмассовые частицы, гравитоны, фотоны, нейтрино. И если бы действительно существовали реликтовые черные дыры достаточно малой массы — это можно было бы наблюдать. Пока же это остается чисто теоретическим предсказанием.
Но здесь открывается еще одна перспектива. Мы пока говорили об эффектах, в которых квантование самой гравитации, казалось бы, не играет роли: испарение Хокинга можно понимать как рождение квантовых частиц классическим гравитационным полем. Квантовая гравитация должна существенно проявляться для черных дыр столь малой массы, что их комптоновская длина волны (величина, определяющая масштаб квантовых флуктуации) становится сравнимой с классическим радиусом горизонта событий для той же массы. Эта масса была указана Планком еще в 1899 году и составляет примерно одну стотысячную грамма. Соответствующий размер (планковская длина) невероятно мал, на 19 порядков меньше размера протона. Принято считать, что планковская энергия, равная массе Планка, умноженной на квадрат скорости света, является предельно допустимой энергией, при которой наши обычные представления о пространстве и времени сохраняют смысл. Действительно, при достижении таких энергий квантовые флуктуации метрики пространства-времени уже не будут малыми, и само пространство-время должно стать существенно квантовым.
Температура хокинговского излучения в энергетических единицах пропорциональна планковской энергии, умноженной на отношение массы Планка к массе черной дыры. Планковская длина определяет и другую важную термодинамическую характеристику черной дыры — ее энтропию. Энтропия черной дыры оказывается равной одной четвертой площади поверхности горизонта событий в единицах планковской длины. Поэтому для дыр звездной массы эта величина крайне велика — она заведомо превышает энтропию обычной звезды, поэтому образование черной дыры не противоречит второму началу термодинамики о росте энтропии. Заметим, что если бы квантового испарения не было вовсе, у нас не было бы причин вводить для черной дыры понятие энтропии, и это приводило бы к противоречию представления о гравитационном коллапсе с термодинамикой. Чтобы испарение Хокинга реально происходило, нужно, чтобы температура дыры была достаточно велика. Оценка характерной массы как массы астероида соответствует времени испарения порядка возраста Вселенной.
Но можно задуматься и о гипотетических объектах планковской массы. Они давно привлекали внимание физиков и иногда именовались планкеонами. Такие частицы были бы, как говорят, существенно непертурбативными объектами в квантовой гравитации, которые невозможно описать на языке гравитонов — элементарных квантов гравитационного поля, возникающих при «наивном» квантовании эйнштейновской теории. В стандартной модели элементарных частиц такие непертурбативные объекты (солитоны и инстан-тоны) также известны. С их помощью описываются квантовые переходы, не являющиеся «малыми», поэтому они представляют особый интерес.
Таким образом получается, что черные дыры планковской массы должны играть важную роль в квантовой гравитации, независимо от того, существуют ли в природе черные дыры макроскопических масс. Поэтому даже если бы астрофизические наблюдения говорили об отсутствии в космосе подобных объектов (на самом деле сейчас ситуация как раз обратная), черные дыры все равно стоило бы «придумать».
Теперь вернемся к моделям супергравитации, о которых шла речь. Эти модели несколько улучшают теорию в смысле уменьшения количества расходящихся величин при ее квантовании, хотя и не решают проблемы полностью. Собственно говоря, именно здесь и следует сказать, что проблема квантования супергравитации решается теорией струн, причем несколько неожиданным образом. Если изначально сформулировать теорию (супер)струн в плоском пространстве-времени, то оказывается, что такая (квантовая) теория может быть сформулирована в десятимерном пространстве-времени, причем спектр возбуждений струн содержит в точности те поля, которые используются в моделях супергравитации. Более того, если теперь предположить, что струны движутся в классических полях такого вида, то для последних возникают ограничения в виде уравнений классической супергравитации. Тем самым оказывается, что уравнения супергравитации возникают как условия на классические поля, в которых может быть построена непротиворечивая теория струн.
Это несколько иное соотношение между понятиями «классический» и «квантовый», чем то, к чему мы привыкли в квантовой механике и квантовой теории поля.
При этом возникает еще одно объяснение гравитации с «посторонней» точки зрения. Собственно успех теории струн как квантовой теории связан с особой конформной симметрией этой теории, которая, в свою очередь, обусловлена просто размерностью струны как одномерного протяженного объекта. Вместо мировой линии, описывающей движение точечной частицы в пространстве-времени, движение струны будет описываться как некоторая двумерная поверхность. Теории таких поверхностей допускают бесконечномерную симметрию, называемую конформной, именно благодаря этой широкой симметрии и становится возможной не только перенормируемая, но и вообще конечная квантовая теория без расходимостей.
Классические уравнения супергравитации (и следовательно, уравнения Эйнштейна) возникают при этом как условия сохранения конформной симметрии квантовой теории струн при наличии классических полей — гравитационного и некоторых других, присутствующих в этой теории.
Итак, если еще раз проследить логику развития попыток квантования гравитации, то первый шаг — это привлечение идеи локальной суперсимметрии, приводящий к моделям супергравитации. Второй шаг — это рассмотрение теории суперструн как квантовой теории, лежащей за этими моделями.
Еще раз подчеркнем, что квантовая теория струн не является результатом квантования классической теории супергравитации, более того, в таком подходе супергравитация вообще не должна подвергаться квантованию (если, конечно, считать входящие туда фермионные поля классическими), а появляется как совокупность условий, налагаемых на квантовую теорию струн.
Если теперь вернуться к черным дырам, то в теории струн эти объекты играют чрезвычайно важную роль, более того, они оказываются лишь низшими, в смысле размерности, представителями целой иерархии протяженных объектов, получивших название гипербран. Скажем, черную дыру можно понимать как гравитирующую частицу. Но можно рассматривать и другие объекты, скажем, струну. Оказывается, что уравнения супергравитации имеют решения, описывающие гравитирующие струны, и соответствующие метрики напоминают также известное решение Шварц-шильда. Далее, можно рассматривать и другие протяженные объекты с размерностью, допустимой размерностью пространства-времени (так чтобы мировой объем этих объектов можно было бы вложить в пространство-время). Такие решения в супергравитационных теориях также существуют, и это наводит на мысль, что могут существовать и соответствующие квантовые объекты.
И действительно, относительно недавно такие протяженные квантовые объекты, помимо собственно струн, были найдены в теории суперструн и получили название Д-бран. Здесь мы еще раз сталкиваемся с необычной ситуацией: исходным объектом является струна, а Д-браны возникают как результат задания граничных условий Дирихле (откуда и название Д-браны) для так называемых открытых струн, имеющих конечную длину. Чтобы понять, как взаимодействуют Д-браны, нужно рассматривать взаимодействие струн с граничными условиями на Д-бранах.
Протяженные объекты — это ключевой момент всей теории, которая претендует не только на роль квантовой гравитации, но и объединенной теории «всего». Например, квантовая электродинамика и другие калибровочные теории получаются как эффективные полевые теории, порождаемые движением открытых струн, закрепленных на Д-бранах. При этом сами гипербраны можно описывать двояким образом: как решения классических уравнений супергравитации, либо как квантовые Д-браны.
Отсюда открывается новая удивительная перспектива изучения чисто полевых теорий с помощью струн. Это одно из новых направлений в теории, которое сейчас интенсивно развивается. Здесь тоже проявляется необычное соотношение между классическими и квантовыми понятиями: оказывается возможным получать существенно квантовые результаты теории поля с помощью классических вычислений в супергравитации.
Алексей Старобинский. Дима действительно сказал ключевое слово — это гравитационное рождение частиц, античастиц. Это и есть действительно то, с чем мы связываем наблюдаемые следствия квантовой гравитации.
Мы обсуждали испарение Хокинга. Испарение маленьких черных дыр — очень красивый эффект. Но вот его мы, к сожалению, не можем видеть, поскольку начальные условия во Вселенной были таковы, что, к сожалению, не образовалось таких маленьких черных дыр.
А для больших черных дыр с массой Солнца — этот эффект настолько фантастически мал, что оказывается абсолютно невидим. Но гравитационное рождение частиц, оказалось, работает. И это выяснилось, когда мы построили теорию Вселенной с начальной, информационной стадии.
Когда мы стали думать, из чего могла возникнуть наша Вселенная и как в ней образовались те неоднородности, из которых мы составлены, этот эффект гравитационного квантового рождения, который до этого рассматривался применительно к черным дырам, работал. Это был 74-й год...Были работы Зельдовича, моего учителя. И мои — 71-го года.
Тогда это было, казалось бы, чисто умозрительное, теоретическое упражнение. А вот в этой теории заработало. И оказалось, что именно сейчас можно предсказать форму, структуру неоднородности в современной Вселенной.
Если говорить об очень высоких частотах, больше 10 в десятой герц, то они нам практически совсем не интересны. А нам интересны, наоборот, сверхдлинные масштабы, существенно меньше одного герца.
Так вот, низкочастотный шум оказался очень сильным. И это был сильнейший эффект гравитационного рождения частиц. Теория правильно предсказала флуктуации температуры реликтового излучения, которые связаны с длинной волной, с неоднородностью уже порядка мегапак. Это был низкочастотный шум существенно выше теплового — следствие гравитационного рождения частиц. Более того, наблюдался еще более тонкий эффект — это некая модуляция спектра в импульсном пространстве. В радиофизике и особенно в телевизионной технике этот спектр используется как один из способов передачи информации, но только немножко более тонкий. Обычно в телевизионной технике работают с частотной модуляцией. Есть еще амплитудная модуляция сигнала, а это еще один способ, типа корреляции фаз, так называемые акустические пики. Этот эффект — некая разновидность того, что Андрей Дмитриевич Сахаров предложил еще в 65-ом году, но только в применении к распределению вещества, а это его аналог в применении к излучению. Вот этот эффект, в конечном счете, тоже имеет квантово-гравитационное происхождение — он обнаружен. Это иллюстрация того, что действительно есть предсказания, основанные на квантовой, слегка упрощенной кванто-во-гравитационной теории рождения частиц.
Правильное предсказание спектра неоднородности в космологии и правильное предсказание акустических пиков — это факт, абсолютно проверенный разными группами, и нет никаких сомнений в том, что такие спектры существуют. Это подтверждение того, что мир вокруг нас остается квантово-гравитационным даже и сейчас.
Спрашивается, почему же мы этого не видим? Этот вопрос, кстати, тоже очень интересный, и он упирается в такие серьезнейшие вещи, как интерпретация квантовой механики и так далее. Мое объяснение, которого придерживаются многие, но существует и альтернативная точка зрения, достаточно простое — из-за несовершенства наших органов чувств. Условно говоря, чтобы видеть, что мир действительно квантовый, мы должны уметь измерять интервалы другого порядка, а мы все сглаживаем, благодаря как нашим при-родным возможностям, так и усиливающим приборам, которые у нас есть. При таком сглаживании оказывается, что истинная квантовость, проявляющаяся в таких вещах, как некоммутативности различных координат, исчезает. Оказывается, что при таком приблизительном описании истинно квантовый мир можно описывать и классической теорией, то есть, на мой взгляд, классичность — это не свойство природы, это свойство нашего ее восприятия...
Александр Гордон. Степень приближения.
Алексей Старобинский. Но вернемся к струнной теории. Если строить теории всех полей, они, конечно, основаны на более фундаментальных понятиях, но когда вы переводите все в термины классического пространства, оказывается, то это пространство-время имеет большее число пространственных размерностей, чем то, которое у нас есть.
Александр Гордон. Неизбежное следствие, да?
Алексей Старобинский. Да, оказывается непротиворечивая теория, суперсимметричная, давайте, мы к ней сразу и перейдем. Можно сформулировать в пространстве, с некоторой оговоркой, 10 — 11 измерений. А почему мы их не видим, где дополнительные измерения? Мы их не видим, потому что они маленькие. Насколько маленькие? Первая гипотеза состоит в том, что они имеют квантовский размер.
Прямое указание на то, что эти измерения дополнительные, состоит в том, что сила притяжения, обычная ньютоновская сила, связана с тем, что у нас трехмерное пространство. Если бы оно на малом расстоянии было бы не трехмерном, а в более высокой размерности, то закон тяготения должен был бы отклоняться от закона. Прямая проверка — самый обычный лабораторный эксперимент, который показывает, что до расстояния примерно в сто микрон нет никаких отклонений, но на расстоянии меньше ста микрон — пока ничего не известно, есть свобода ввести, с одной стороны, дополнительные микроскопические масштабы, а с другой стороны, очень большие, по сравнению с той малой цифрой десять в 33-ей. Если это так, то это еще один способ как эффект обобщенной квантовой теории всех полей, включая квантовую гравитацию. Я подчеркиваю, что если бы постоянная тонкая структура изменялась со временем, то это как раз и был бы наиболее естественный способ все объяснить.
Дмитрий Гальцов. Итак, на самом деле дополнительные измерения возникли не просто из нашего желания усложнить теорию или сделать что-то такое очень необычное, а скорее, сначала это получилось по причинам чисто математическим, в результате поисков простой формулировки квантовой гравитации. Но сама идея дополнительных измерений возникла в физике гораздо раньше, еще в начале XX века, в работах Калуцы и Клейна.
Оказывается, если взять не четырехмерное пространство-время, то есть трехмерное пространство и время, а пятимерную теорию гравитации с дополнительной пространственной координатой, то из нее можно получить не только описание гравитационного поля в четырехмерии, но появляется также максвелловское поле и одно скалярное поле. Так что вместо двух теорий (Максвелла и Эйнштейна) в четырехмерии, можно рассматривать чисто гравитационную теорию в пятимерии. Более сложные многомерные теории гравитации возникли уже на этапе поиска суперсимметричных теорий.
Когда начали изучать супергравитационные теории, то там была особенно интересна модель с максимальной суперсимметрией. Оказывается, что максимальная степень суперсимметрии, которую можно заложить в четырехмерном пространстве-времени, иначе, максимальное число гравитино — это восемь. Но написать уравнения такой теории оказалось непросто: там присутствуют 128 бозонных и 128 фермионных степеней свободы. Поэтому появилась мысль использовать Калуце-Клейновскую идею, рассматривая теории с меньшим числом гравитино, но в более высоких размерностях.
И действительно, оказалось, что в 11-мерии существует единственная суперсимметричная теория с одним гравитино, в которой также 128 бозонных и фермионных степеней свободы. Более того, если считать, что на самом деле поля зависят только от четырех координат нашего физического пространства-времени, то она как раз переходит в ту максимально суперсимметричную теорию в четырехмерии, которая нам нужна.
Отсюда в теории появились 11 измерений. При этом оказалось, что условие суперсимметрии, требующее, чтобы было равное число бозонных и фермионных степеней свободы, требует введения еще одного поля, которое вообще не может существовать в четырехмерии. Именно, гравити-но имеет в одиннадцати измерениях 128 степеней свободы, а гравитон всего 44. Остальные 84 берет на себя поле полностью антисимметричного тензора третьего ранга, которое похоже по своим свойствам на поле Максвелла. Это поле, однако, не может взаимодействовать с точечной частицей, а должно взаимодействовать с мембраной (М2-бра-ной) которая представляет собой двумерную поверхность, заметающую трехмерный объем в пространстве-времени. Правило таково, что ранг антисимметричного тензорного поля должен совпадать с числом измерений мирового объема, заметаемого гипербраной. Этот ход рассуждений, как видим, снова приводит нас к необходимости рассмотрения гипербран.
Однако теория суперструн формулируется в пространстве-времени десяти измерений, и чтобы понять, какие гипербраны в ней потенциально присутствуют, необходимо определить, какие антисимметричные тензорные поля нужно ввести. В десятимерии известны две суперсимметричные теории с двумя гравитино, содержащие 128 бозонных и фермионных степеней свободы, и одна теория с 64 степенями свободы. Первые две, рассматриваемые в совокупности, содержат гипербраны всех размерностей, которые можно вложить в десятимерное пространство-время: начиная от точечного объекта, вплоть до 8-бран. Тогда, следуя логике введения гипербран в супергравитациях, можно задуматься, а нельзя ли проквантовать супергравитационные модели, включая в них все необходимые гипербраны. Однако оказывается, что построить последовательную квантовую теорию гипербран произвольной размерности невозможно (по крайней мере, до сих пор не удалось).
В рамках же теории суперструн гипербраны имеют различный статус, из них только струны (1-браны) являются объектами, изначально подвергающимися квантованию. Остальные же выступают как обсуждавшиеся выше Д-бра-ны, т.е. как квантовые объекты непертурбативного типа.
Наконец в последнее время появилась еще одна радикальная идея, что гипербраны могут существовать не только на микроскопическом уровне квантовой гравитации, но вся Вселенная может быть такой гипербраной, движущейся в пространстве большей размерности (гипотеза «больших» дополнительных измерений). Здесь привлекательно то, что тогда именно на гипербране должны жить векторные поля, которые нужны в стандартной модели, чтобы объяснить наблюдаемую физику элементарных частиц. Гравитация же живет в полном пространстве. Но тогда возникает проблема с законом Ньютона, потому что закон Ньютона обратных квадратов получается, если пространство трехмерно; в пространстве другой размерности степень спадания гравитационного поля иная. Однако если предположить, что полное пространство достаточно сильно искривлено, то можно добиться выполнения обычного закона Ньютона на гипербране, хотя и с некоторыми поправками. Параметром теории является характерный размер дополнительных измерений, или кривизна дополнительного пространства, если этот размер бесконечен.
Что оказалось самым неожиданным, это то, что, во-первых, нет экспериментальных опровержений гипотезы больших дополнительных измерений, даже если предположить, что характерный размер является вполне макроскопическим (порядка миллиметров). При этом параметры модели можно подобрать таким образом, что характерным масштабом квантовой гравитации на гипербране будет не планковская энергия, а гораздо более низкая, порядка 10000 Гэв. Такие энергии будут достижимы на ускорителях уже в ближайшее время, так что модель может быть экспериментально проверена. Предсказания этой модели выглядят совершенно фантастически, например, на ускорителях должны рождаться не только элементарные частицы, но и черные дыры, которые будут затем мгновенно испаряться по Хо-кингу. Возможен и «уход» в дополнительные измерения, что должно проявляться в несохранении энергии и импульса в нашем физическом пространстве. Обсуждались и вовсе экзотические возможности, например, не может ли на ускорителях рождаться новая Вселенная.
Конечно, в этой модели делаются весьма радикальные предположения, которые вовсе не вытекают с необходимостью из общей идеологии теории струн, хотя и не противоречат ей. Привлекает то, что эти предположения действительно можно будет проверить экспериментально в ближайшие годы, и если действительно описанные выше явления будут иметь место, это будет веским аргументом в пользу теории струн. С другой стороны, если они не будут обнаружены, это вовсе не будет смертельным для общего подхода теории струн. Необходимо будет искать другие пути проверки теории.
Алексей Старобинский. Конечно, превращение массы в энергию предусматривает тот факт, что энергия — та же самая масса, масса в равном количестве материи. То есть практически такой процесс был и мог бы наблюдаться, это видно на законе сохранения числа протонов и нейтронов. Но опять-таки экспериментально мы такого процесса не видим. Протон устойчив с колоссальной точностью во время жизни. Протоны существуют, по последним данным, больше десяти в 32-й степени лет. Это намного больше, чем возраст Вселенной. Но они существуют при низких энергиях, при достаточно низких, а вот при таких высоких — это неизвестно.
Нужно различать предсказания старой квантовой гравитации, основанной на классической гравитации Эйнштейна, и тех новых ее разновидностей, которые разрабатываются сейчас.
Хочу подчеркнуть, что замечательно то, что все эти теории не умозрительны, они дают прямые наблюдательные предсказания, которые можно проверять в космологии.
Александр Гордон. И которые пока еще не проверены?
Алексей Старобинский. Да.
Александр Гордон. Или экспериментальные.
Алексей Старобинский. Другое дело, мы действительно получаем только верхний предел, или нижние пределы на все новые масштабы, связанные с этими дополнительными измерениями.
Дмитрий Гальцов. Но есть еще и вещи, которые настолько будоражат воображение, что, может быть, и в научной фантастике будут полезны. Вот Леша рассказывал про рождение частиц — это эффект не собственно квантовой гравитации, это рождение квантовых частиц в классическом гравитационном поле. Так вот в теории струн возможно и рождение дополнительных измерений пространства. Струны движутся в десятимерном пространстве, однако сейчас думают, что истинная размерность все же равна одиннадцати. Появление дополнительного измерения можно связать с рождением объектов, называемых Д-нуль-бранами, которые напоминают точечные заряды, кулоновское поле которых является компонентой метрики, отвечающей одиннадцатому измерению. Таким образом, рождение этих частиц означает возникновение одиннадцатого измерения, или, как говорят, декомпактификацию.
Пока полная одиннадцатимерная квантовая теория «всего» окончательно не сформулирована, хотя для нее уже есть название «М-теория» (предлагались различные интерпретации этой аббревиатуры: matrix, mother, monster и т.д.). Существует надежда, что эта теория будет выглядеть настолько же просто и красиво, как и эйнштейновская теория, и тогда, возможно, это убедит всех, поскольку эстетический критерий в теоретической физике всегда играл огромную роль.
Александр Гордон. О, да. Спасибо.
Алексей Старобинский. Еще один аргумент, который объясняет, почему все заинтересовались такими объектами, заключается в том, что возникла необходимость объяснить, не гипотетически, а реально, так называемую иерархию масс элементарных частиц. Мы просто заведомо знаем, что элементарные частицы могут иметь самые разные массы. Но есть электрон, есть протон, который в две тысячи раз более тяжелый, есть более тяжелые частицы ба-зоны, есть планковская масса, которая в десять в 19-ой раз больше.
Мы совсем недавно открыли, что нифины имеют массу и эта масса существенно меньше. И наконец, есть масштаб масс, который грандиозно меньше. Можно четко сказать, что массы элементарных частиц или масштабы взаимодействия в природе самые разные, они не сводятся к какому-то одному числу.
И одна из причин или мечта, которая связана с изучением объектов, имеющих разные размеры, состоит в том, чтобы, используя малый масштаб, который в этих мембранах есть, объяснить иерархию масс.

Материалы к программе


Из статьи И. Л. Бухбиндера «Фундаментальные взаимодействия»
ГРАВИТАЦИОННОЕ ВЗАИМОДЕЙСТВИЕ.

Это взаимодействие носит универсальный характер, в нем участвуют все виды материи, все объекты природы, все элементарные частицы! Общепринятой классической (не квантовой) теорией гравитационного взаимодействия является эйнштейновская общая теория относительности. Гравитация определяет движение планет в звездных системах, играет важную роль в процессах, протекающих в звездах, управляет эволюцией Вселенной, в земных условиях проявляет себя как сила взаимного притяжения. Конечно, мы перечислили только небольшое число примеров из огромного списка эффектов гравитации.
Согласно общей теории относительности, гравитация связана с кривизной пространства-времени и описывается в терминах так называемой римановой геометрии. В настоящее время все экспериментальные и наблюдательные данные о гравитации укладываются в рамки общей теории относительности. Однако данные о сильных гравитационных полях по существу отсутствуют, поэтому экспериментальные аспекты этой теории содержат много вопросов. Такая ситуация порождает появление различных альтернативных теорий гравитации, предсказания которых практически неотличимы от предсказаний общей теории относительности для физических эффектов в Солнечной системе, но ведут к другим следствиям в сильных гравитационных полях.
Если пренебречь всеми релятивистскими эффектами и ограничиться слабыми стационарными гравитационными полями, то общая теория относительности сводится к ньютоновской теории всемирного тяготения.
Из многих физических предсказаний общей теории относительности отметим три. Теоретически установлено, что гравитационные возмущения могут распространяться в пространстве в виде волн, называемых гравитационными. Распространяющиеся слабые гравитационные возмущения во многом аналогичны электромагнитным волнам. Их скорость равна скорости света, они имеют два состояния поляризации, для них характерны явления интерференции и дифракции [следует добавить, что существует важное отличие гравитационных волн от электромагнитных. Электромагнитные волны, распространяясь в среде, сильно зависят от свойств этой среды и скорость их распространения сильно уменьшается. Гравитационное взаимодействие не меняется при переходе из одной среды в другую]. Однако в силу чрезвычайно слабого взаимодействия гравитационных волн с веществом их прямое экспериментальное наблюдение до сих пор не было возможно. Тем не менее данные некоторых астрономических наблюдений по потере энергии в системах двойных звезд свидетельствуют о возможном существовании гравитационных волн в природе.
Теоретическое исследование условий равновесия звезд в рамках общей теории относительности показывает, что при определенных условиях достаточно массивные звезды могут начать катастрофически сжиматься. Это оказывается возможным на достаточно поздних стадиях эволюции звезды, когда внутреннее давление, обусловленное процессами, ответственными за светимость звезды, не в состоянии уравновесить давление сил тяготения, стремящихся сжать звезду. В результате процесс сжатия уже ничем не может быть остановлен. Описанное физическое явление, предсказанное теоретически в рамках общей теории относительности, получило название гравитационного коллапса. Исследования показали, что если радиус звезды становится меньше так называемого гравитационного радиуса, то для внешнего наблюдателя звезда гаснет. Никакая информация о процессах, идущих в этой звезде, не может достичь внешнего наблюдателя. При этом тела, падающие на звезду, свободно пересекают гравитационный радиус. Если в качестве такого тела подразумевается наблюдатель, то ничего, кроме усиления гравитации, он не заметит. Таким образом, возникает область пространства, в которую можно попасть, но из которой ничего не может выйти, включая световой луч. Подобная область пространства называется черной дырой. Существование черных дыр является одним из теоретических предсказаний общей теории относительности, некоторые альтернативные теории гравитации построены именно так, что они запрещают такого типа явления. В связи с этим вопрос о реальности черных дыр имеет исключительно важное значение. В настоящее время имеются наблюдательные данные, свидетельствующие о наличии черных дыр во Вселенной.
В рамках общей теории относительности впервые удалось сформулировать проблему эволюции Вселенной. Тем самым Вселенная в целом становится не предметом спекулятивных рассуждений, а объектом физической науки. Раздел физики, предметом которого является Вселенная в целом, называется космологией. В настоящее время считается твердо установленным, что мы живем в расширяющейся Вселенной.
Современная картина эволюции Вселенной основывается на представлении о том, что Вселенная, включая такие ее атрибуты, как пространство и время, возникла в результате особого физического явления, называемого Большой Взрыв, и с тех пор расширяется. Согласно теории эволюции Вселенной, расстояния между далекими галактиками должны увеличиваться со временем, и вся Вселенная должна быть заполнена тепловым излучением с температурой порядка 3 K. Эти предсказания теории находятся в прекрасном соответствии с данными астрономических наблюдений. При этом оценки показывают, что возраст Вселенной, то есть время, прошедшее с момента Большого Взрыва, составляет порядка 10 млрд лет. Что касается деталей Большого Взрыва, то это явление слабо изучено и можно говорить о загадке Большого Взрыва как о вызове физической науке в целом. Не исключено, что объяснение механизма Большого Взрыва связано с новыми, пока еще неизвестными законами Природы. Общепринятый современный взгляд на возможное решение проблемы Большого Взрыва основывается на идее объединения теории гравитации и квантовой механики.
ПОНЯТИЕ О КВАНТОВОЙ ГРАВИТАЦИИ. Можно ли вообще говорить о квантовых проявлениях гравитационного взаимодействия? Как принято считать, принципы квантовой механики носят универсальный характер и применимы к любому физическому объекту. В этом смысле гравитационное поле не представляет исключения. Теоретические исследования показывают, что на квантовом уровне гравитационное взаимодействие переносится элементарной частицей, называемой гравитон. Можно отметить, что гравитон является безмассовым бозоном со спином 2. Гравитационное взаимодействие между частицами обусловлено обменом гравитоном. Частица испускает гравитон, в силу чего состояние ее движения изменяется. Другая частица поглощает гравитон и также изменяет состояние своего движения. В результате возникает воздействие частиц друг на друга.
Отличительной чертой явлений микромира является то обстоятельство, что физические величины оказываются подверженными так называемым квантовым флуктуациям. Это означает, что при многократных измерениях физической величины в определенном состоянии принципиально должны получаться различные численные значения, обусловленные неконтролируемым взаимодействием прибора с наблюдаемым объектом. Вспомним, что гравитация связана с проявлением кривизны пространства-времени, то есть с геометрией пространства-времени. Поэтому следует ожидать, что на чрезвычайно малых временах порядка t и расстояниях порядка l геометрия пространства-времени должна стать квантовым объектом, геометрические характеристики должны испытывать квантовые флуктуации. Другими словами, на планковских масштабах нет никакой фиксированной пространственно-временной геометрии, образно говоря, пространство-время представляет собой бурлящую пену.
Последовательная квантовая теория гравитации не построена. В силу чрезвычайно малых значений l , t следует ожидать, что в любом обозримом будущем не удастся поставить эксперименты, в которых проявили бы себя квантовогравитационные эффекты. Поэтому теоретическое исследование вопросов квантовой гравитации остается единственной возможностью продвижения вперед. Есть ли, однако, явления, где квантовая гравитация могла бы оказаться существенной? Да, есть, и мы о них уже говорили. Это гравитационный коллапс и Большой Взрыв. Согласно классической теории гравитации, объект, подверженный гравитационному коллапсу, должен сжиматься до сколь угодно малых размеров. Это означает, что его размеры могут стать сравнимыми с l , где классическая теория уже неприменима. Точно так же в процессе Большого Взрыва возраст Вселенной был сравним с t и она имела размеры порядка l. Это означает, что понимание физики Большого Взрыва невозможно в рамках классической теории. Таким образом, описание конечной стадии гравитационного коллапса и начальной стадии эволюции Вселенной может быть осуществлено только с привлечением квантовой теории гравитации.
Из статьи В. П. Фролова «Введение в физику черных дыр»
ОСОБЕННОСТИ СИЛ ТЯГОТЕНИЯ.Одним из наиболее удивительных предсказаний теории тяготения Эйнштейна является возможность существования черных дыр — компактных массивных объектов, обладающих столь сильным гравитационным полем, что никакие физические тела, никакие сигналы не могут вырваться из них наружу. И хотя черные дыры с полной достоверностью пока еще не открыты, имеется немало причин, по которым они привлекают к себе в последние годы пристальное внимание ученых. Повидимому, наиболее важной из них является то, что обнаружение черных дыр имело бы значение, далеко выходящее за рамки астрофизики, поскольку речь идет не об открытии еще одного, быть может, довольно удивительного астрофизического объекта, а о проверке правильности наших представлений о свойствах пространства и времени в сильных гравитационных полях.
Теоретические исследования свойств черных дыр и возможных следствий гипотезы об их существовании особенно интенсивно развивались последние 15 лет [статья написана в 1983 году]. Наряду с изучением тех особенностей черных дыр, которые важны для понимания их возможных астрофизических проявлений, теоретические исследования позволили обнаружить ряд неожиданных закономерностей. С такими на первый взгляд далекими областями, как термодинамика и теория информации. О черных дырах, их месте в астрофизике и об их удивительных свойствах и пойдет речь ниже. За возникновение черных дыр ответственны силы тяготения, вероятно, самого удивительного из всех известных физике взаимодействий, Начнем с того, что гравитационное взаимодействие — самое слабое. И несмотря на это, силы тяготения не только были открыты первыми, а закон Ньютона, описывающий эти силы, послужил отправной точкой для описания других взаимодействий, но и в подавляющем числе явлений в астрофизике и космологии гравитация играет основную роль. Причина этого состоит в том, что тяготение обладает рядом замечательных свойств, ведущих к его многократному усилению, не будь которого, это взаимодействие скорее всего вообще не было бы открыто. Что же это зa свойства?
Гравитационные силы — дальнодействующие. Свойство дальнодействия означает, что сила, действующая на пробную частицу со стороны тела, создающего поле, медленно, по степенному закону, уменьшается с расстоянием. Благодаря этому свойству пробная частица испытывает тяготение со стороны всех частей массивного тела, в том числе и достаточно от нее удаленных. Этим свойством наряду с тяготением обладает электромагнитное взаимодействие, в то время как сильное и слабое взаимодействия являются короткодействующими и имеют малые радиусы действия. Кванты электромагнитного поля, фотоны, и кванты гравитационного поля, гравитоны, — частицы безмассовые, и сила взаимодействия между парой электрических зарядов или массивных тел убывает по известному степенному закону: сила обратно пропорциональна квадрату расстояния.
Гравитационные силы имеют один знак. Между электромагнитным и гравитационным взаимодействиями имеется, однако, существенное отличие. В природе существуют электрические заряды двух видов: положительные и отрицательные, причем одноименные заряды отталкиваются. Это приводит к тому, что в макроскопических телах электрический заряд обычно практически скомпенсирован, в противном случае они были бы разорваны на части мощными силами электростатического отталкивания. Более того, при отсутствии, сторонних сил процессы в системах с заряженными телами протекают таким образом, чтобы уменьшить потенциальную энергию, при этом заряды противоположных знаков будут компенсироваться. Все это приводит к тому, что в естественных условиях электрический заряд макроскопических тел оказывается пренебрежимо малым. Напротив, «заряды тяготения» — массы — всегда имеют один и тот же знак, причем они не отталкиваются, а притягиваются друг к другу. При этом чем тело массивнее, тем оно более устойчиво относительно «развала». Для гравитационного взаимодействия характерен следующий, механизм самоусиления: массивное тело притягивает к себе вещество, падающее вещество увеличивает массу тела и, следовательно, его способность притягивать. Силы тяготения, ничтожно малые для отдельных элементарных частиц, суммируясь при составлении из них макроскопического тела, могут достигать огромной величины, вырастая в космическом масштабе, в могучий, нередко определяющий фактор. При этом малость константы гравитационного взаимодействия компенсируется большой величиной гравитационного заряда. Описанный выше механизм самоусиления приводит к тому, что в тех масштабах, в которых тяготение доминирует над другими взаимодействиями, однородное распределение вещества оказывается неустойчивым и рост случайных неоднородностей вызывает развитие, в частности, таких наблюдаемых структур, как планеты, звезды, галактики и скопления галактик.
Универсальность гравитационного взаимодействия. Гравитационное взаимодействие обладает еще одним, крайне важным, отличительным свойством — оно универсально. Для каждого из остальных, перечисленных выше взаимодействий существуют нейтральные частицы, тогда как все объекты, существующие в природе (включая и поля), порождают гравитационное поле. В роли гравитационного заряда выступает полная масса т системы, которая, как учит специальная теория относительности, связана с полной энергией системы Е. Именно поэтому все объекты природы, обладая энергией, непременно участвуют в гравитационном взаимодействии. «Весит», в частности, и само гравитационное поле, что приводит к существенной нелинейности уравнений Эйнштейна, описывающих тяготение.

ЧТО ТАКОЕ ЧЕРНАЯ ДЫРА?
Гравитационное поле тем сильнее, чем больше масса тела и чем меньше размер области пространства, в которой это тело сосредоточено. Еще в 1795 г. великий французский математик Пьер-Симон Лаплас, исследуя распространение света в поле тяготения, пришел к выводу, что в природе могут встречаться тела, абсолютно черные для внешнего наблюдателя. Поле тяготения таких тел настолько велико, что не выпускает наружу лучей света. Теория Эйнштейна — ключ к проблеме черных дыр. Вывод Лапласа, строго говоря, является ошибочным, поскольку он основан на классической механике и теории тяготения Ньютона. В действительности, однако, нельзя пользоваться ни той, ни другой: распространение света подчиняется законам релятивистской механики. Тем не менее, как это иногда случается в истории науки, обе «ошибки» Лапласа точно скомпенсировали друг друга и вывод о невозможности выхода световых сигналов из-под гравитационного радиуса оказался совершенно правильным. Более того, связанный со специальной теорией относительности и справедливый в общей теории относительности запрет на существование в природе сигналов, переносящих информацию со скоростью, большей скорости света, придал утверждению о невозможности получения какой-либо информации о событиях, происходящих под гравитационным радиусом, еще более категорический смысл. Подобное тело, сжатое до размера своего гравитационного радиуса, получило название черной дыры, а границу черной дыры, т. е. поверхность, ограничивающую область, откуда невозможен выход сигналов, стали называть горизонтом событий.
Явление суперрадиации. Рассмотрим падающую на вращающуюся черную дыру тела, электромагнитную или гравитационную волну. Обычно при рассеянии волны на черной дыре амплитуда рассеянной волны меньше амплитуды падающей волны, поскольку часть энергии поглощается черной дырой. Однако при падении цилиндрической волны, для которой отношение энергии к ее угловому моменту относительно оси вращения черной дыры меньше угловой скорости черной дыры, происходит усиление. Явление усиления падающей волны вращающейся черной дырой получило название суперрадиации. Если окружить вращающуюся черную дыру полностью отражающими излучение стенками, то даже малый сигнал, обладающий параметрами, удовлетворяющими условию усиления, будет непрерывно расти. Подобная система вполне могла бы явиться генератором соответствующего излучения.
КВАНТОВЫЕ ЭФФЕКТЫ В ЧЕРНЫХ ДЫРАХ. Квантовое рождение частиц во внешнем поле. Квантовые эффекты несущественны для черных дыр с массой порядка солнечной или больше. Однако для черных дыр малой массы эти эффекты не только не малы, но приводят к качественному изменению картины эволюции черной дыры.
Согласно современным, квантовым представлениям физический вакуум, т. е. состояние, в котором отсутствуют реальные частицы, является довольно сложным образованием. В вакууме непрерывно происходит образование, взаимодействие и уничтожение виртуальных (короткоживущих) частиц. В отсутствие внешних полей вакуум устойчив, т. е. все протекающие в нем процессы не приводят к появлению реальных (долгоживущих) частиц. При наличии внешнего поля часть виртуальных частиц, взаимодействуя с ним, успевает приобрести достаточную энергию, чтобы стать реальными. Этот процесс приводит к эффекту квантового рождения частиц из вакуума внешним полем.
Рождение частиц в заряженных и вращающихся черных дырах. Приведенные выше рассуждения полностью справедливы для процессов рождения заряженных частиц в однородном электростатическом поле. Это поле рождает из вакуума электрон-позитронные пары и пары других заряженных частиц. В 1970 г. М. А. Марков и В. П. Фролов обратили внимание, что квантовый эффект рождения частиц из вакуума в поле заряженной черной дыры приводит к уменьшению заряда черной дыры практически до его уничтожения. Аналогичное явление происходит, как показали в 1972 г. Я. Б. Зельдович и А. А. Старобинский, во вращающихся черных дырах.
Классическое явление суперрадиации, рассмотренное выше, имеет квантовый аналог: спонтанное рождение частиц из вакуума в гравитационном поле вращающейся черной дыры. Поскольку в физическом вакууме равно нулю лишь среднее значение поля, а сами поля флуктуируют около нулевых значений, то амплитуда тех вакуумных флуктуации, для которых выполняется условие усиления, непрерывно возрастает, что проявляется в рождении реальных квантов поля.
Работу, необходимую для превращения виртуальных частиц в реальные, совершает гравитационное поле черной дыры. Рожденные частицы, вылетающие из черной дыры, обязательно обладают угловым моментом, совпадающим по направлению с угловым моментом черной дыры. Поэтому вне вращающейся черной дыры появляется поток частиц, уносящих энергию и момент черной дыры.
Для черных дыр, возникающих при коллапсе звезд, подобные квантовые эффекты крайне малы даже для быстро вращающихся чёрных дыр.
Квантовый взрыв черных дыр. Квантовое испарение изолированной черной дыры приводит к уменьшению ее массы, а следовательно, и площади. Причина этого в том, что в отличие от классической теории квантовая теория допускает появление таких состояний, в которых плотность энергии отрицательна. Именно это имеет место вблизи черных дыр. Поток частиц из черной дыры на бесконечность, уносящих положительную энергию, сопровождается по-тркрм отрицательной энергии, связанной с поляризацией вакуума, внутрь черной дыры, приводящим к уменьшению ее массы. В результате черная дыра испаряется. Время жизни черных дыр, возникающих при коллапсе звезд, более чем на 50 порядков превосходит возраст Вселенной.
Завершая рассказ о черных дырах, хотелось бы обратить внимание на следующее. Еще 20 лет назад мало кто верил в саму возможность существования черных дыр. Гипотеза о черных дырах привлекла к себе пристальное внимание после открытия нейтронных звезд. И удивительное дело — черные дыры сразу «пришлись ко двору» в астрофизике. Им нашлось место не только в виде остатков при вспышках сверхновых, но и в ядpax шаровых скоплений, галактик и квазаров.
После открытия С. Хокингом явления квантового испарения черных дыр особое значение приобрел вопрос о космологической роли малых черных дыр. Исследование свойств черных дыр привело к обнаружению глубоких связей между гравитацией и термодинамикой. Этот простой перечень говорит о том, что за последние 16–15 лет, по сути дела, возникла, новая область науки — физика черных дыр со своим объектом исследования и своими проблемами. Проблемы эти, зачастую носят столь фундаментальный характер, а объект настолько удивителен, что эта область привлекает внимание многочисленных исследователей. И хочется надеяться, что она порадует физиков новыми, быть может, еще более неожиданными, результатами.

Библиография


Биррел Н., Дэвис П. Квантованные поля в искривленном пространстве-времени. М., 1983.
Бухбиндер И. Л. Фундаментальные взаимодействия//Соросовский образовательный журнал. 1997. № 5.
Вайнберг С. Первые три минуты: Современный взгляд на происхождение Вселенной. М., 1981.
Дэвис П. Суперсила. М., 1986.
Рубаков В. Большие и бесконечные дополнительные измерения//Успехи физических наук. 2001. № 171; Hep-ph/0104152
Старобинский А. А. Квантовая теория гравитации//Физическая энциклопедия. М., 1990. Т. 2.
Старобинский А. А., Ткачев И. И. Trans-Planckian particle creation in cosmology and ultra-high energy cosmic rays//Письма в ЖЭТФ. 2002. Т. 76.
Фролов В. П. Введение в физику черных дыр. М., 1983.
Хокинг С. Краткая история времени: От Большого взрыва до черных дыр. СПб., 2001.
John H. Schwarz, Introduction to Superstring Theory//Hep-ex/0008017
Sahni V., Starobinsky A. A. The case for a positive cosmological lambda-term//Intern. Journ. Mod. Phys. D. 2000. V. 9.
Starobinsky A. A. Future and origin of our Universe: modern view//Gravitation and Cosmology. 2000. V. 6.
Polchinski J. Quantum gravity at the Planck length//Hep-th/9812104
Frolov A. V., Kofman L.A., Starobinsky A. A. Prospects and problems of tachyon matter cosmology//Phys. Lett. B. 2002. V. 545.
Рекомендуем На сайте pnalog.ru, посвящённом налоговому планированию и оптимизации налогообложения, вы найдёте материалы о том, как оформляется налоговая декларация по налогу на прибыль. Там же вы узнаете, как заполнять отчёты в Пенсионный фонд, какая отчётность у индивидуального предпринимателя и пр.

  • ДРУГИЕ МАТЕРИАЛЫ РАЗДЕЛА:
  • РЕДАКЦИЯ РЕКОМЕНДУЕТ:
  • ОСТАВИТЬ КОММЕНТАРИЙ:
    Имя
    Сообщение
    Введите текст с картинки:

  • Александр 2012-04-07 11:39:01

    Почему-то ничего не сказано о гравитационном коллапсе фотонов при достижении ими планковской энергии. В результате такого коллапса фотоны превращаются в планковские черные дыры с размером 10^-33 см (возможно, безмассовые). Теоретически этот сценарий уже доказан, смотрите статью на эту тему Klimets A.P. FIZIKA B (Zagreb) 9 (2000) 1, 23 - 42 или http://fizika.hfd.hr/fizika_b/bv00/b9p023.htm

Интеллект-видео. 2010.
RSS
X