загрузка...

Странности квантового мира

  • 03.07.2010 / Просмотров: 11375
    //Тэги: Гордон   квантовая механика  

    Можно ли переслать секретный код с полной гарантией того, что он не будет перехвачен? Насколько реально построить компьютер, способный к вычислениям, для которых современным суперкомпьютерам не хватит времени жизни Вселенной? Может ли один объект находиться сразу в нескольких местах? О странных закономерностях квантового мира, о вытекающих из этого новых технологических возможностях и трудных концептуальных проблемах физики Михаил Менский и Лев Вайдман(Израиль).

загрузка...







загрузка...

Для хранения и проигрывания видео используется сторонний видеохостинг, в основном rutube.ru. Поэтому администрация сайта не может контролировать скорость его работы и рекламу в видео. Если у вас тормозит онлайн-видео, нажмите паузу, дождитесь, пока серая полоска загрузки содержимого уедет на некоторое расстояние вправо, после чего нажмите "старт". У вас начнётся проигрывание уже скачанного куска видео. Подробнее

Если вам пишется, что видео заблокировано, кликните по ролику - вы попадёте на сайт видеохостинга, где сможете посмотреть этот же ролик. Если вам пишется что ролик удалён, напишите нам в комментариях об этом.


Участники


Михаил Борисович Менский - доктор физико-математических наук, профессор, ведущий научный сотрудник Физического института РАН
Лев Вайдман (Lev Vaidman) - профессор (Израиль, Великобритания)

Предварительный план дискуссии


1. Введение: квантовая механика в 20-м веке не только доказала свою достоверность, но стала инженерной наукой (на ней основаны сверхпроводимость, лазеры, ядерная энергетика, электроника). Однако странное поведение квантовых систем до сих пор кажется парадоксальным, вызывает дискуссии, порождает новые интерпретации квантовой механики. Осознание и «принятие» этих странностей не только делает более законченной теорию, но и приводит ко все новым и новым технологиям, таким, как квантовая криптография, квантовые компьютеры и квантовая телепортация. В этой программе речь будет идти о странностях квантового мира.
2. Одним из важнейших отличий квантовой механики является Принцип Суперпозиции. Согласно ему состояния квантово-механической системы являются векторами, то есть их можно складывать и умножать на число. Если возможно каждое из двух состояний, то возможна и их сумма, а также и любая линейная комбинация этих состояний (то есть каждое из этих состояний можно умножить на некоторое число, а уже после этого сложить получившиеся состояния).
Этот принцип приводит к тому, что компактный квантовый объект может находиться «одновременно» в разных местах. Ведь если есть состояние, в котором объект находится в области A, и другое состояние, в котором он находится в области B, то можно сложить эти два состояния как векторы, и тогда новое состояние можно описать так: объект находится и в области A, и в области B. Если сам объект имеет размер меньше или порядка размера каждой из областей, а расстояние между областями A и B много больше этого размера, то нахождение объекта одновременно в обеих областях противоречит нашей интуиции. Причина, конечно, в том, что интуиция эта почерпнута из опыта, в котором мы встречаем лишь классические объекты (то есть такие, которые подчиняются классической механике). Квантовые же объекты (как правило, но не всегда, они являются микроскопическими) ведут себя совершенно иначе.
Принцип суперпозиции (то есть тот факт, что состояния таких объектов являются векторами) — одно из важнейших отличий квантового мира. Из этого принципа вытекают, в частности, странные черты квантового измерения (то есть измерения квантовой системы), а также много других «странностей» квантовых систем:
a) Результат измерения квантовой системы можно предсказать лишь вероятностным образом, то есть можно рассчитать вероятность каждого из альтернативных результатов измерения. Даже если абсолютно точно известно состояние, в котором измеряемая система находится перед измерением, невозможно предсказать достоверно (с вероятностью, равной единице), какой результат даст измерение. Так, если компактный объект до измерения находится «одновременно» в двух разных местах (скажем, A и B), то измерение его положения может дать любой из двух результатов.
b) В классической механике тоже возможны ситуации, когда невозможно точно предсказать результат измерения, однако эти ситуации возникают лишь в том случае, если начальное состояние системы не известно точно, а описано вероятностным образом (то есть известны лишь вероятности того, что система находится в каждом из нескольких различных состояний). В таком случае вероятностный характер предсказания является следствием неполного знания начального состояния, что легко понять. В квантовой механике вероятностный (недетерминированный) характер предсказаний является фундаментальным законом, от разброса результатов измерения нельзя избавиться, уточняя начальное состояние системы.
c) Фундаментальный характер неопределенности при измерении можно описать, сказав, что измеряемая система до измерения не обладает теми свойствами, которые обнаруживаются в результате измерения. Так, при измерении положения объекта получается результат A или B, но до измерения этот объект не обладает ни свойством «быть в точке A», ни свойством «быть в точке B». Эту странную черту квантовых систем (или квантовых измерений) можно проверить экспериментально, используя так называемую теорему Белла. Согласно этой теореме вероятностное распределение по различным результатам измерения коррелированных друг с другом объектов (о квантовой корреляции или ЭПР-парах мы поговорим позже) обладает некоторыми характерными свойствами (удовлетворяет неравенствам Белла), если измеряемая система уже до измерения обладает теми свойствами, которые обнаруживаются у нее при измерении. Для проверки неравенств Белла были поставлены опыты (Aspect, 1999). Оказалось, что неравенства Белла нарушаются, то есть результаты опытов оказались несовместимы с классическим описанием ситуации (согласно которому система уже до измерения обладает одним из свойств, скажем, A или B, только мы не знаем, каким именно). Зато они подтвердили «странное» квантово-механическое описание (до измерения система не обладает ни одним из этих свойств, одно из них появляется лишь после измерения).
d) Эти особенности квантовых измерений (теперь подтвержденные экспериментально) ведут к некоторым парадоксам типа известного парадокса шредингеровского кота (описание состояния системы после измерения зависит от того, знаем ли мы результат измерения или еще не знаем) и ведут к трудным концептуальным вопросам, например, о том, когда и за счет чего происходит выбор одного из альтернативных результатов измерения (когда и почему система приобретает свойство A или B). Такого рода концептуальные проблемы лежат по существу вне физики (недаром квантовая механика успешно решает все реальные физические и технические задачи, встречающиеся перед исследователями или инженерами). Однако отсутствие решения этих проблем оставляет (по крайней мере у людей определенного склада ума) ощущение неудовлетворенности, и попытки их решения, начавшиеся в конце 20-х и начале 30-х годов 20-го века на заре квантовой механики, не прекращаются до сих пор, а в последнее десятилетие заметно активизировались.
3. Одна из странных черт квантовой механики — нелокальность. Она проявляется, например, в знаменитом «двухщелевом» эксперименте (опыте Юнга). В этом опыте частицы, пролетающие одна за одной через две щели в непрозрачном экране, образуют за ним интерференционную картину: направления, в которых летит много частиц, чередуются с направлениями, в которых частиц мало. При этом важно, что обе щели открыты одновременно. Если сначала закрыть одну из них и подсчитать частицы, летящие в каждом направлении, потом то же самое сделать, закрыв другую щель (и открыв первую), и сложить получившиеся числа, то интерференционной картины не получится.
a) В этом эксперименте все происходит так, как должно было бы быть, если бы через щели проходили не точечные частицы, а волна, ведь интерференция характерна для волн. Это иллюстрирует двойственную природу квантовых частиц: каждая из них обладает и свойствами точечной частицы (корпускулы), и свойствами волны. В одних ситуациях проявляются корпускулярные свойства частицы, в других — волновые.
b) Интерференционная картина (чередование высокой и низкой плотности частиц) исчезает не только в том случае, если закрыть одну из щелей, но и тогда, когда включается дополнительный прибор, фиксирующий, через какую щель пролетает частица (эта модификация эксперимента называется экспериментом типа «Который Путь»). Наличие информации о пути, выбранном частицей, приводит к тому, что она ведет себя как точечная частица, а ее волновые свойства не проявляются, интерференция становится невозможной. Если же информация о пути отсутствует (дополнительный прибор выключен), то интерференционная картина появляется, проявляются волновые свойства частицы. Это частный случай общего правила, обсуждавшегося ранее: квантовая система может не обладать теми свойствами, которые она обнаруживает при измерении, эти свойства появляются в процессе измерения.
c) Если ту же ситуацию проанализировать, используя образ летящей частицы, то возникает вопрос, как, пролетая через одну из щелей, точечная частица чувствует, что вторая щель тоже существует и открыта. Один из ответов состоит в том, что это проявление нелокальности квантово-механических явлений: волновые свойства делают возможными нелокальные явления для таких локальных объектов, как точечные частицы. Второе «объяснение» (а точнее — наглядный образ, которым, однако, следует оперировать с осторожностью) состоит в том, что частица (несмотря на то, что она точечная) пролетает «одновременно» через обе щели. Очевидно, что это связано с принципом суперпозиции — возможностью компактного объекта находиться одновременно в двух удаленных областях A и B.
4. Нелокальность и квантовая корреляция — парадоксальные черты квантовой механики, изучение которых привело к осознанию новых поразительных возможностей квантово-механических систем.
a) Первой работой, в которой детально анализировалось свойство нелокальности квантово-механических систем, была знаменитая работа Эйнштейна, Подольского и Розена (ЭПР), вышедшая еще в 1935 году, но активно цитируемая и обсуждаемая до сих пор. В ней рассматривался мысленный эксперимент с двумя частицами. В определенный момент пара частиц приводится в состояние, в котором значения наблюдаемых величин одной из них определенным образом скоррелированы со значениями соответствующих наблюдаемых величин другой. Эта корреляция сохраняется даже при последующем удалении частиц друг от друга. Поэтому измерение одной из наблюдаемых первой частицы дает достоверную информацию о величине соответствующей наблюдаемой второй частицы, находящейся, быть может, очень далеко, и наоборот. Очевиден нелокальный характер происходящего. Такие квантово-коррелированные пары частиц или просто ЭПР-пары и мысленные эксперименты с ними оказались удобным инструментом для анализа различных нелокальных эффектов в квантовой механике.
b) Квантовая корреляция возникает фактически при любом взаимодействии любых квантовых систем. При этом если две системы S1 и S2 провзаимодействовали и между ними появилась квантовая корреляция, то возникает весьма своеобразная ситуация, когда нельзя уже говорить о состоянии каждой из этих систем, и лишь для составной системы S1+S2, включающей S1 и S2 в качестве подсистем, сохраняет смысл понятие состояния (точнее — вектора состояния). В этом случае говорят, что системы S1 и S2 запутаны друг с другом. Запутанные состояния (не только двух, но и огромного числа квантовых систем) играют ключевую роль в квантовой информатике и квантово-информационных технологиях.
Важно подчеркнуть особый характер квантовой корреляции. В классической физике два объекта тоже могут оказаться коррелированы в результате взаимодействия. В этом случае, измеряя некоторые свойства одного из этих объектов, можно достоверно судить о соответствующем свойстве другого. Существенная разница по сравнению с квантовыми объектами состоит в том, что в этом случае оба объекта обладают упомянутыми свойствами еще до измерения, измерение лишь уточняет, каковы именно эти свойства. В квантовом же случае каждый из коррелированных объектов, рассматриваемый отдельно, не обладает тем свойством, которое появляется у него в результате измерения. Это обстоятельство не является пустым домыслом, его можно проверить с помощью теоремы Белла.
c) Нелокальные свойства квантово-механических объектов или нелокальность квантовой механики делает возможным нелокальные измерения, измерения без взаимодействия (OInteraction-Free Measurement), которые, в свою очередь, позволяют манипулировать объектами, находящимися одновременно в разных местах. Это дает неожиданные возможности, которых не могло бы быть в классической физике. Например, одной (квантовой) шторкой можно перекрыть сразу n отверстий так, что фотон не сможет пролететь ни через одну из них [Aharonov and Vaidman, 2002]. Измерение без взаимодействия — это такое измерение с использованием интерферометра, при котором детектируется фотон, проходящий через один рукав интерферометра, но при этом получается информация о предмете, находящемся в другом рукаве интерферометра, через который фотон не проходил.
d) Квантовая игра — это игра с такими правилами, в которой заведомо выигрывает игрок, обладающий специальным квантовым устройством (оно подсказывает ему ходы).
5. Принцип суперпозиции и квантовая корреляция (запутанные состояния) делают возможными новые приложения квантовой механики, которые были предложены в последние два десятилетия и объединяются под именем квантовой информатики или квантово-информационных технологий. Главными направлениями в квантовой информатике являются квантовая криптография (способ безопасной пересылки кодов), квантовые компьютеры и квантовая телепортация. О квантовой телепортации подробно говорилось в одной из прошлых передач, в которой выступали профессора Игорь Волович и Луиджи Аккарди. Поэтому остановимся на первых двух из упомянутых направлений квантовой информатики.
Квантовая криптография — это способ безопасной пересылки кодов, основанный на специфике квантово-механических систем, например, фотонов. Эта технология реализована во многих экспериментах. Так, под Женевским озером группой Гизина (Nicolas Gisin) проложена квантово-криптографическая линия (на основе волоконной оптики) длиной в десятки километров.
Квантовые компьютеры в отличие от классических позволяют использовать «квантовый параллелизм», то есть реализовать параллельные вычисления за счет принципа суперпозиции, что не требует параллельных вычислительных устройств. Пока реализованы (с помощью различных технологий, в частности, с помощью квантовой оптики) лишь квантовые компьютеры для обработки небольших чисел (порядка десятка разрядов в двоичной системе). Этого достаточно, чтобы показать, что сам принцип квантового компьютера работает, однако никаких реальных применений такие компьютеры, разумеется, иметь не могут. Они станут эффективными лишь при значительном увеличении длины обрабатываемых чисел. Пока не ясно, можно ли этого добиться реально.
a) Чаще всего в качестве простейших «кирпичиков» для построения сложных квантово-информационных систем используются кубиты (по-английски qubit — сокращение от quantum bit, квантовый бит, а бит, как известно, единица информации, соответствующая выбору одной из двух альтернатив). Кубит — это любая квантовая система, которая может находиться в двух базисных состояниях, |0> и |1>, отождествляемых с цифрами 0 и 1 двоичной системы, а кроме этого, в соответствии с принципом суперпозиции, также в любых состояниях, получающихся из базисных состояний операциями умножения на число и сложения.
b) С помощью принципа суперпозиции легко доказать, что невозможно квантовое клонирование, то есть нельзя построить прибор, который бы любое квантовое состояние данной системы «удваивал» — приводил бы другую систему того же типа точно в такое же состояние. В свою очередь невозможность клонирования приводит к тому, что можно построить линии передачи секретных кодов с любой степенью защищенности от подслушивания.
Методика создания таких абсолютно секретных линий составляет содержание квантовой криптографии. В квантово-криптографических информационных каналах пересылаются однотипные квантовые системы в заданных состояниях (например, фотоны определенной поляризации), и чередование состояний несет информацию о пересылаемом секретном коде. Если бы квантовое клонирование было возможно, то можно было бы, перехватив серию пересылаемых фотонов, создать точную копию этой серии и тем самым перехватить (подслушать) пересылаемый код, нисколько не изменив состояния самих пересылаемых фотонов. Тот, кому адресован код, не мог бы обнаружить, что он попал к третьему лицу.
Невозможность клонирования приводит к тому, что любая попытка определить состояния пересылаемых фотонов приводит к изменению этих состояний. Протокол кодирования можно устроить так, что адресат с любой наперед заданной вероятностью обнаружит это изменение. Тем самым он выяснит, что данная серия была подслушана, и не будет использовать присланный в этой серии код.
c) Запутанные состояния и принцип суперпозиции позволяют предложить схемы квантовых компьютеров, в которых (если только их удастся реализовать на практике, что пока не очевидно) «квантовый параллелизм» сделает вычисления неизмеримо более быстрыми, так что за разумное время удастся решать задачи, которые на классических компьютерах неразрешимы просто потому, что их решение потребовало бы времени, сравнимого с временем жизни Вселенной.
Принцип квантового параллелизма состоит в использовании запутанных состояний многих кубитов. Два кубита могут находиться в состоянии |00> (когда и первый, и второй кубиты находятся в состоянии |0>), в состоянии|01> (когда первый из них находится в состоянии |0>, а второй — в состоянии |1>), в состоянии|10> (первый — в состоянии |1>, второй — в состоянии |0>) и в состоянии |11> (и первый, и второй кубиты — в состоянии |1>). Но согласно принципу суперпозиции и первый, и второй кубиты могут находиться в состоянии суперпозиции (|0>+|1>). Тогда пара кубитов окажется в состоянии
(|0>+|1>)(|0>+|1>)=|00>+|01>+|10>+|11>
Здесь уже виден квантовый параллелизм и его преимущества. В классическом компьютере каждая ячейка памяти может находиться либо в состоянии 0, либо в состоянии 1. Пара ячеек может находиться в одном из четырех состояний 00, 01, 10, 11. Чтобы представить все эти четыре двухразрядных двоичных числа, требуется, разумеется, четыре пары ячеек. В противоположность этому в памяти, построенной на кубитах (квантовых битах), для представления всех четырех двоичных чисел требуется всего одна пара кубитов. Ясно, что всего лишь одна секция из n кубитов позволяет представить 2n двоичных чисел, каждое из которых имеет n разрядов (классическая память потребовала бы 2n секций по n ячеек в каждой).
Таким образом, при большом числе кубитов (большом n) квантовый компьютер оперирует сразу с огромным числом двоичных чисел. При этом получается экономия, которая экспоненциально быстро растет с ростом n. Это и приводит к фантастическому быстродействию квантовых компьютеров. Пока, впрочем, это преимущество остается лишь гипотетическим, потому что реализация квантовых компьютеров с большим числом кубитов (большим n) встречается с огромными техническими трудностями.
6. Заключение: Как уже говорилось, странности квантовой механики ведут к концептуальным проблемам, которые ставились еще отцами квантовой механики и активно обсуждаются (в другой форме) до сих пор. То, что эти концептуальные проблемы не поддаются решению в течение многих десятилетий, указывает на то, что их вряд ли вообще можно решить методами, обычно применяемыми в естественных науках. Это и не удивительно, потому что сами эти проблемы по существу выходят за рамки естественных наук и лежат в области метанауки. С другой стороны, некоторые из направлений, в которых происходят поиски, и прежде всего так называемая концепция (или интерпретация) Эверетта-Уилера, приводят к чрезвычайно интересным новым возможностям. При известной смелости можно надеяться, идя в этом направлении, найти «мостик», связывающий естественные науки с областью гуманитарных знаний, изучающих духовный мир человека, и таких «ненаучных» средств познания мира, как религия.

Библиография


Блохинцев Д. И. Принципиальные вопросы квантовой механики. М., 1987.
Бом Д. Квантовая Теория. М., 1965.
Бор Н. Дискуссии с Эйнштейном о проблемах теории познания в атомной физике/Нильс Бор. Атомная физика и человеческое познание. М., 1961.
Килин С. Я. Квантовая Информация//Успехи Физических Наук. 1999. № 169.
Менский М. Б. Явление декогеренции и теория непрерывных квантовых измерений//Успехи физических наук. 1998. Т. 168. № 9.
Менский М. Б. Квантовая механика: новые эксперименты, новые приложения и новые формулировки старых вопросов//Успехи физических наук. 2000. Т.170. № 6.
Менский М. Б. Квантовые измерения и декогеренция. Модели и феноменология/Пер. с англ. М., 2001.
Менский М. Б. Квантовые измерения: декогеренция и сознание//Успехи физических наук. 2001. № 44.
Шредингер Э. Что такое жизнь? Физический аспект живой клетки. Ижевск, 1999.
Bell J. S. Speakable and Unspeakable in Quantum Mechanics. Cambridge, 1987.
Penrose R. Shadows of the Mind. A Search for the Missing Science of Consciousness. Oxford, 1994.
Vaidman L. The Meaning of the Interaction-Free Measurements. Quant-ph/0103081.
Vaidman L. Variations on the Theme of the Greenberger-Horne-Zeilinger Proof. Quant-ph/9808022, which published in Foundations of physics.
Vaidman L. Tests of Bell inequalities. Quant-ph/0107057 (in part is published in: Quantum [Un]speakables, From Bell to Quantum Information/Bertlmann and Zeilinger eds. Springer, 2002.)
Vaidman L. The Many-Worlds Interpretation of Quantum Mechanic/The Stanford Encyclopedia of Philosophy. Stanford, 2002. http://plato.stanford.edu/entries/qm-manyworlds/

  • ДРУГИЕ МАТЕРИАЛЫ РАЗДЕЛА:
  • РЕДАКЦИЯ РЕКОМЕНДУЕТ:
  • ОСТАВИТЬ КОММЕНТАРИЙ:
    Имя
    Сообщение
    Введите текст с картинки:

Интеллект-видео. 2010.
RSS
X